Регулятор оборотов асинхронного электродвигателя 220в своими руками

Частотный регулятор для асинхронного двигателя – устройство и принцип работы

Регулятор оборотов асинхронного электродвигателя 220в своими руками

Есть в электроустановках позиции, когда без электродвигателя, работающего на постоянном токе, не обойтись. Именно этот электромотор можно регулировать по скорости вращения ротора, что и требуется в электроустановках.

Правда, у него масса недостатков, и одни из них – это быстрый износ щеток, если их установка была проведена с искривлением, да и срок их эксплуатации достаточно низок. При износе происходит искрение, поэтому такой движок во взрывоопасных и запыленных помещениях использовать нельзя.

Плюс ко всему электродвигатель постоянного тока стоит дорого. Чтобы изменить данную ситуацию, используют асинхронный двигатель и частотный регулятор для асинхронного двигателя.

Практически по всем показателям электродвигатели, работающие на переменном токе, превосходят аналоги на постоянном. Во-первых, они надежнее. Во-вторых, имеют меньшие габариты и вес. В-третьих, цена ниже. В-четвертых, они проще в эксплуатации и подключении.

А вот недостаток у них один – это сложность регулирования частоты вращения. В данном случае стандартные способы регулирования частоты асинхронных двигателей здесь не подойдут, а именно – изменения напряжения, установка сопротивления и так далее.

Частотное управление асинхронным электрическим двигателем – была проблема номер один. Хотя теоретическая база известна аж с тридцатых годов прошлого столетия. Все дело упиралось в дороговизну частотного преобразователя.

Все изменилось, когда изобрели микросхемы, с помощью которых через транзисторы стало возможным собрать преобразователь частоты с минимальной себестоимостью.

Принцип регулирования

Итак, способ регулирования частоты вращения асинхронного двигателя основано на одной формуле. Вот она внизу.

ω=2πf/p, где

  • ω – угловая скорость вращения статора;
  • f – частота входного напряжения;
  • p – количество полюсных пар.

То есть, получается так, что изменить скорость вращения электродвигателя можно лишь путем изменения частоты напряжения. Что это дает на практике? Первое – это плавность работы мотора, особенно это будет чувствовать при пуске оборудования, когда сам двигатель работает под самыми высокими нагрузками. Второе – повышенное скольжение. За счет этого растет КПД, и снижаются потери мощностных характеристик.

Структура частотного регулятора

Все современные преобразователи частоты построены на принципе так называемого двойного преобразования. То есть, переменный ток преобразуется в постоянный через неуправляемый выпрямитель и фильтр. Далее, через импульсный инвертор (он трехфазный) происходит обратное преобразование тока постоянного в ток переменный.

Инвертор сам состоит из шести силовых ключей (транзисторных). Так вот каждая обмотка электрического движка подключается к определенным ключам выпрямителя (положительному или отрицательному). Именно инвертор изменяет частоту напряжения, которое прикладывается к статорным обмоткам.

По сути, именно через него происходит частотное регулирования электродвигателя.

В этом приборе на выходе устанавливаются силовые транзисторы. Они выполняют роль ключей. Если сравнивать их с тиристорами, то необходимо отметить, что первые вырабатывают сигнал в виде синусоиды. Именно данная форма создает минимальные искажения.

Принцип работы

Теперь сам принцип работы частотного преобразователя. Чтобы понять это, предлагаем разобрать рисунок ниже.

Принцип работы

Итак, пройдемся по рисунку, где

  • «В» — это неуправляемый силовой выпрямитель диодного типа.
  • «АИН» — автономный инвертор.
  • «СУИ ШИМ» — система широтно-импульсного управления.
  • «САР» — система автоматического регулирования.
  • «Св» — конденсатор фильтра.
  • «Lв» — дроссель.
Читайте также  Как увеличить мощность электродвигателя от стиральной машины

По схеме очень хорошо видно, что инвертор регулирует частоту напряжения  за счет системы широтно-импульсного управления (оно высокочастотное).

Именно эта часть регулятора отвечает за подключение обмоток статора электродвигателя попеременно то к положительному полюсу выпрямителя, то к отрицательному. Периодичность подключения к полюсам происходит по синусоидальной кривой.

При этом частота импульсов определяется именно частотой ШИМ. Так и происходит частотное регулирование.

Заключение по теме

Как видите, данный способ регулирования частоты вращения асинхронного двигателя достаточно прост. Но и не только.

Он позволяет уйти от ненадежных двигателей постоянного тока, перейти на более надежные виды электрического оборудования.

К тому же структура прибора, основанная на современных методах преобразования электрического тока, сделала его дешевым и доступным. Плюс ко всему простота устройства дает возможность собрать частотники своими руками.

Источник: http://OnlineElektrik.ru/eoborudovanie/edvigateli/chastotnyj-regulyator-dlya-asinxronnogo-dvigatelya-ustrojstvo-i-princip-raboty.html

Регулятор оборотов электродвигателя 220в. схема и описание | О банках и финансах

Этот регулятор оборотов электродвигателя 220в разрешает изменять частоту оборотов вращения вентилятора или электродвигателя, рассчитанных на работу от сети 220 вольт.

Достаточно популярным регулятором оборотов для электродвигателей на 220 вольт переменного тока есть схема на тиристорах. Типовой схемой есть подключение электродвигателя либо вентилятора в разрыв анодной цепи тиристора.

Одно не неважное условие при применении аналогичных регуляторов, это надежный контакт во всей цепи. Что нельзя сказать про коллекторные электродвигатели, потому, что у них механизм щеток формирует краткосрочные обрывы электроцепи. Это значительно влияет на уровень качества работы регулятора.

Описание работы схемы регулятора оборотов

Нижеприведенная схема тиристорного  регулятора оборотов ,  именно создана для трансформации частоты вращения коллекторных электродвигателей (электродрель, фрезер, вентилятор ). Первое, что направляться отметить, это то, что  двигатель вместе с силовым тиристором VS2 подсоединен в одну из диагоналей диодного моста VD3, на другую же  подается сетевое напряжение 220 вольт .

Кроме этого, этот тиристор контролируется достаточно широкими импульсами, благодаря которым, непродолжительные отключения активной нагрузки, которыми характеризуется работа  коллекторного двигателя,  не  воздействуют на  устойчивую  работу данной схемы.

Для управления тиристором VS1 на транзисторе VT1, собран генератор импульсов. Питание данного генератор осуществляется трапециевидным напряжением, создающимся в следствии ограничения хороших полуволн стабилитроном VD1 имеющих частоту 100 Гц. Конденсатор С1 разряжается через сопротивления R1, R2, R3.

  Резистором R1 осуществляется скорость разряда данного конденсатора.

При достижении на конденсаторе

напряжения достаточного для открывания транзистора VT1, на управляющий вывод  VS1 поступает хороший импульс. Тиристор раскрывается и сейчас уже на управляющем выводе  VS2 появляется долгий импульс управления. И уже с данного тиристора напряжение, которое практически и воздействует на величину оборотов, подается на двигатель.

Частоту оборотов вращения электродвигателя регулируют резистором R1. Так как в цепь  VS2 подключена индуктивная нагрузка, то вероятно спонтанное отпирание тиристора,  кроме того при отсутствии управляющего сигнала.  Исходя из этого для предотвращения данного нежелательного результата, в схему добавлен диод VD2 что подключается параллельно обмотке возбуждения L1 электродвигателя.

Подробности электродвигателя оборотов и регулятора вентилятора

Стабилитрон – возможно заменить на другой с напряжением стабилизации в районе 27 – 36В. Тиристоры VS1 – любой маломощный с прямым напряжением более 100 вольт, VS2 — вероятно поставить КУ201К, КУ201Л, КУ202М. Диод VD2 – с обратным напряжением не меньше 400 вольт и прямым током более 0,3А.

 Конденсатор C1 – КМ-6.

Настройка регулятора оборотов

На протяжении наладки схемы регулятора нужно применить стробоскопом, что разрешает измерить частоту вращения электродвигателя или стрелочный вольтметр для переменного тока, что подсоединяют параллельно двигателю.

Вращая ручку резистора R1, определяют диапазон трансформации напряжения. Методом подбора сопротивления R3 устанавливают этот диапазон в районе от 90 до 220 вольт. В том случае в случае если при минимальных оборотах двигатель вентилятора трудится  неустойчиво, то нужно мало уменьшить сопротивление R2.

Читайте также  Симисторный регулятор мощности для электродвигателя

Источник: www.stalvit.ru

Источник: www.joyta.ru

Подборка статей, которая Вас должна заинтересовать:

  • Как уменьшить обороты электродвигателяегулировка оборотов электродвигателя часто бывает нужна как в производственных, так и каких то бытовых целях. В первом случае для уменьшения либо…
  • Как регулировать обороты электродвигателяРЕГУЛИРОВКА ОБОРОТОВ ЭЛЕКТРОДВИГАТЕЛЕЙ И.СЕМЕНОВ, 141980, Столичная обл, г Дубна, ул Мира, 9/6 — 4, тел (096-221) 4-54-00 С вопросом регулировки оборотов…
  • Обороты электродвигателяВсе электродвигатели имеют главные характеристики: Потребляемая мощность Большой КПД Номинальная частота вращения вала Номинальный момент Кроме этого они…
  • Какие должны быть обороты двигателяBMW 5 series › Бортжурнал › На каких оборотах не «убивается» двигатель? Витебск, Беларусь Я постоянно езжу, переключаясь приблизительно на 2000 об/мин. В…
  • Как определить обороты двигателя без тахометраПара лет назад мне безотлагательно пригодилось замерить обороты двигателя, а тахометра нет. Как тут быть. Потому, что замерить обороты мне необходимо…
  • Плавают обороты холостого хода на ваз-2114Неисправность плавающих оборотов на холостом ходу – достаточно распространенная неприятность, в особенности, в случае если сказать о модели ВАЗ-2114,…

Источник: http://kapitalbank.ru/reguljator-oborotov-jelektrodvigatelja-220v-shema/

Способы регулировки оборотов вращения асинхронных двигателей

Достаточно часто режим работы вспомогательного механизированного оборудования требует понижения штатных частот вращения. Добиться такого эффекта позволяет регулировка оборотов асинхронного двигателя. Как это сделать своими руками (расчет и сборку), используя стандартные схемы управления или самодельные устройства, попробуем разобраться далее.

ОГЛАВЛЕНИЕ

  • Что такое асинхронный двигатель?
    • Двигатели с короткозамкнутым ротором (АДКР)
    • Двигатели с фазным ротором
  • Принцип работы и число оборотов асинхронных двигателей
  • Способы изменения оборотов двигателя
  • Типичные схемы регуляторов оборотов

Что такое асинхронный двигатель?

Электродвигатели переменного тока нашли довольно широкое применение в различных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании.

Они используются для превращения электрической энергии, которая поступает от сети, в механическую энергию вращающегося вала. Чаще всего используются именно асинхронные преобразователи переменного тока. В них частота вращения ротора и статора отличаются.

Между этими активными элементами обеспечивается конструктивный воздушный зазор.

И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.

Двигатели с короткозамкнутым ротором (АДКР)

Здесь используется обмотка в виде алюминиевых, медных или латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами).

Тип соединения этих элементов зависит от мощности двигателя: для малых значений используют метод совместной отливки дисков и стержней, а для больших – раздельное изготовление с последующей сваркой между собой.

Обмотка статора подключается с использованием схем «треугольника» или «звезды».

Двигатели с фазным ротором

К сети подключается трехфазная обмотка ротора, посредством контактных колец на основном валу и щеток. За основу принимается схема «звезда». На рисунке внизу представлена типичная конструкция такого двигателя.

Принцип работы и число оборотов асинхронных двигателей

Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°.

После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться.

Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.

Читайте также  Как регулировать скорость вращения электродвигателя

Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:

n = 60f / p, об/мин

где f – частота сетевого напряжения, Гц; р – число полюсных пар статора.

Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов нужно вручную по косвенным показателям. Как правило, используется три основных метода:

  • Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже);

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

загрузка…

  • Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:

2p = Z1 / y,

где 2p – число полюсов; Z1 – количество пазов в сердечнике статора; y – собственно, шаг укладки обмотки.

Стандартные значения оборотов:

  • Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:

2p = 0,35Z1b / h или 2p = 0,5Di / h,

где 2p – число полюсов; Z1 – количество пазов в статоре; b – ширина зубца, см; h – высота спинки, см; Di – внутренний диаметр, образованный зубцами сердечника, см.

После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.

Способы изменения оборотов двигателя

Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

  1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором;
  2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.

Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).

Типичные схемы регуляторов оборотов

На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

Обороты электродвигателя будут регулироваться за счет потенциометра, который определяет фазу входного импульса, открывающего симистор.

Как можно судить из информации, представленной выше, от оборотов асинхронного двигателя зависят не только параметры его работы, но и эффективность функционирования питаемого подъемного или обрабатывающего оборудования. В торговой сети сегодня можно приобрести самые разнообразные регуляторы, но также можно совершить расчет и собрать эффективное устройство своими руками.

Источник: http://ElectricVDele.ru/elektrooborudovanie/elektrodvigateli/regulirovka-oborotov-asinhronnogo-dvigatelya-svoimi-rukami.html

Понравилась статья? Поделить с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: